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Reactive Collisions and Interactions of Ultracold Dipolar Atoms

Svetlana Kotochigova

Department of Physics, Temple University, Philadelphia, PA 19122-6082

I. COLLISIONAL INTERACTIONS OF RARE-EARTH MAGNETIC ATOMS

The breakthroughs in the experimental realization of the strongly correlated quantum
gases of atoms with a large magnetic moments, such as Cr [1], Dy [2, 3], and Er [4], open
a new scientific playground for the study of quantum magnetism with high-spin atomic
systems. This new research area comes into play due to long-range anisotropic nature of
interactions between these magnetic atoms that allows to engineer exotic many-body phases
with control and tunability. Due to its large spin, dipolar gases of magnetic atoms represent
an excellent environment for exploring the interface between condensed matter and atomic
physics, as recently illustrated by [5], where the complex spin dynamics observed for doubly-
occupied sites of the Cr lattice. Models of quantum magnetism were also engineered with
polar molecules based on the anisotropic nature of their field-induced long-range interactions.

We studied the collision between magnetic Dysprosium (Dy) and Erbium (Er) atoms,
of interest for several ongoing experiments [2–4, 6, 7]. Dy and Er have a ground-state
configuration with an unfilled inner 4f shell shielded by a closed 6s2 outer shell. In the 4f-
shell electrons are spin aligned with an orbital angular momentum that is maximal. Hence,
these atoms have very large magnetic moments, 10µB in Dy and 7µB in Er, and a large total
angular momentum leading to anisotropic magnetic and dispersion interaction potentials
between the atoms.

We first studied, classified, and constructed the atom-atom interaction potentials. This
included a coupled-cluster calculation of some of the short-range electronic potentials when
the electron-clouds of the atoms overlap, as well as a determination of the anisotropic dis-
persion, magnetic dipole-dipole, and electric quadrupole-quadrupole interaction when the
atoms are further apart [8]. Secondly, we set up a close-coupling calculation combining these
interactions and predicted scattering cross-sections as function of collision energy as well as
magnetic field B.

We succeeded in calculating C6 van-der-Waals coefficients for both species, based on
known atomic transition frequencies and oscillator strengths. As an example, Figure 1
shows our results for Er as a function of the projection Ω of the total molecular angular
momentum ~J on the interatomic axis. Details for Dy+Dy and Er+Er calculations can be
found in Refs. [8, 9].

The spin structure of the 4f shell leads to 153 potentials for Dy and 91 for Er dissociating
to the ground state limit. We assumed that the ratios of the ab-initio potentials are the
same as for their adiabatic C6 coefficients. Consequently, we could construct all potentials
requiring only a coupled-cluster calculation for the single gerade potential with maximal
projection Ω and knowledge of the van der Waals coefficients. As an initial model this
approach is justified, as the bond is mainly due to the overlap of the isotropic 6s2 shells.
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FIG. 1: Gerade adiabatic dispersion coefficients in atomic units for two 3H6 Er atoms as a function

of the projection Ω of the total angular momentum ~J on the interatomic axis. Arrows symbolize

the orientation of ~J .

We also determined the strength of the quadrupole-quadrupole (q-q) interaction, based
on a coupled-cluster calculation of the atomic quadrupole moments. The moments are small,
with Q = −0.00524 a.u. for Dy and Q=0.0289 a.u. for Er, leading to a q-q interaction that
can be safely neglected.

The next step was setting up a coupled-channel calculation, allowing atoms to rotate and
vibrate and where the atomic Zeeman states are coupled by the anisotropic interactions.
The calculations were performed with the symmetrized channels |j1m1〉|j2m2〉Y`m(R̂) with
projections mi of the atomic angular momentum along the magnetic field direction. The
spherical harmonic Y`m(R̂) describes rotation with partial wave ` and anisotropic interactions
couple channels between different `. A description of our closed-coupling calculation for Dy
atoms can be found in [10] and for Er in [11].

A first-principle coupled-channel model allowed us to calculate anisotropy-induced mag-
netic Feshbach-resonance spectra of bosonic atoms. The model treats the Zeeman, magnetic
dipole-dipole, and isotropic and anisotropic dispersion interactions on equal footing. The
Hamiltonian includes

H = − h̄2

2µr

d2

dR2
+

~̀2

2µrR2
+HZ + V (~R, τ),

where ~R describes the orientation of and separation between the two atoms. The first
two terms are the radial kinetic and rotational energy operators, respectively. The Zeeman
interaction is HZ = gµB(j1z +j2z)B, where g is an atomic g-factor and jiz is the z component

of the angular momentum operator ~i of atom i = 1, 2. The nuclear repulsion, V (~R, τ), is
anisotropic and τ labels the electronic variables. Finally, µr is the reduced mass and for
R → ∞ the interaction V (~R, τ) → 0. A magnetic field B is aligned along the ẑ direction.

Coupling between the basis states is due to V (~R, τ).
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FIG. 2: Scattering length of m=−8 164Dy atoms in Bohr radii as a function of magnetic field with

and without the magnetic dipole-dipole or the anisotropic contribution of the dispersion interaction.

We use a collision energy of E/k =30 nK and channels with even partial waves ` ≤ 10. The top

panel shows the case when all interactions are included. In the middle and bottom panel the

dispersion and magnetic dipole-dipole anisotropy are set to zero, respectively.

Figure 2 shows the scattering length for the collision of two stretched m = −8 164Dy atoms
as a function of B. The calculation included 91 channels with even ` ≤ 10. We observed a
large number of resonances, many are narrow, some are broad, that can only exist because
of the anisotropic interactions between the atoms. These “anisotropic” resonances for sub-
merged shell atoms differ from those in alkali-metal atom collisions. For alkalis the hyperfine
interaction between electron and nuclear spins gives sufficient complexity, without coupling
partial waves, that resonances occur without anisotropy.

We have also performed coupled-channels calculations for Er+Er scattering in the basis
|j1m1, j2m2, `m`〉 ≡ Y`m`

(θ, φ)|j1m1〉|j2m2〉, where ~a=1,2 are the atomic angular momenta
with space-fixed projection ma=1,2 along the magnetic field direction, spherical harmonics

Y`m`
(θ, φ) describe molecular rotation with partial wave ~̀, and angles θ and φ orient the

internuclear axis relative to the magnetic field. In this basis the Zeeman and rotational
interaction are diagonal and coupling between the basis states is due to 91 molecular Born-
Oppenheimer (BO) potentials and the magnetic dipole-dipole interaction. The BO potentials
induce either isotropic (` and m` conserving) or anisotropic (` or m` changing) couplings.
The Hamiltonian conserves Mtot = m1 + m2 + m` and couples only even (odd) `. For fixed
Mtot simulations are made tractable by only including basis states with 0 ≤ ` ≤ Lmax.

For homonuclear collisions only basis states with even j + ` exist. We have used Mtot =
−16 and even ` ≤ 20. Figure 3 shows the elastic rate coefficients for collisions between two m
= -6 168Er atoms in range of magnetic field strength from zero to 50 Gauss. The temperature
is chosen to be 360 nK.

Both theoretical simulation data show a large number of overlapping Feshbach resonances.
We have performed an analyses of the distribution of magnetic field separations between
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FIG. 3: Elastic rate coefficient of m = −6 168Er collisions as a function of magnetic field using a

collision energy of E/k = 360 nK. Partial waves ` up to 20 are included.

neighboring Feshbach resonances and compare to similar analyses of the experimental data
[11]. Results of our statistical analyses are presented in Fig. 4. This figure shows the
distribution of the nearest-neighbor spacings (NNS) between Feshbach resonances for the
168Er isotope for fields between B=30 G to 70 G and grouping resonance spacings ∆B in
bins with a width of 160 mG. These spacings scaled to the mean spacing, s, were then
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FIG. 4: The normalized distribution P (s) of nearest-neighbor spacings (NNS) of 168Er Feshbach

resonances as a function of dimensionless s = ∆Bρ̄, where the ∆B are NNS and ρ̄ is the mean

resonance density per unit field strength. The experimental data is shown as a bar graph and filled

red circles with error bars. The dash gray, dash-dotted gray, and solid red curves are Poisson,

Wigner-Dyson, and Brody distributions fit to the experimental data, respectively. The dashed blue

line is a Brody distribution fit to the distribution of NNS of a close-coupling calculation where

partial waves up to Lmax = 20 have been included.
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fit to a Poisson distribution P (s) = exp(−s) for non-interaction levels, the Wigner-Dyson
distribution P (s) = (π/2)s exp(−πs2/4) characterizing strongly interacting levels, and the
Brody distribution, which is a one-parameter function that smoothly connects between the
Poisson and Wigner-Dyson distribution. The distribution is similar in shape as for the
experimental data. Both distributions are fit by the Brody distribution with η = 0.6, which
favors Wigner distribution.

II. COLLISIONAL COOLING AND DETECTION OF IONIC MOLECULES

Sympathetic cooling of molecular ions by collisions with laser-cooled atoms was predicted
to be efficient at cooling the internal molecular degrees of freedom [12]. Although the predic-
tion relied on proven technologies, it was not previously implemented, possibly owing to the
misconception that molecular ions predominantly undergo charge-exchange reactions leading
to energetic, neutral molecules. The PI was involved in the first realization of sympathetic
cooling of trapped BaCl+ in collisions with Ca atoms co-located in a magneto-optical trap
[13]. The experiment was performed in the group of Dr. E. Hudson at UCLA.

Evaluation of how well molecular ions are cooled was crucial. We relied on state-sensitive
photodissociative detection of BaCl+ to ionic Ba+ and neutral Cl atoms, shown schematically
in Fig. 5a. This method is applicable to any molecule that can be photodissociated as long
as the internal state can be probed within the vibrational relaxation time. The method
exploits the fact that, although the photodissociation cross-section is broad, the individual
vibrational levels have unique frequency responses for photodissociation. It is, however,
necessary to measure the photodissociation cross-section with high precision.

We supplied accurate electronic potentials and dipole moments for BaCl+, shown in
Fig. 5a and b, and created the quantum-mechanical model of the photodissociation cross
sections. These simulations determined the cross section of individual vibrational states; the
lowest two of which (that is, v = 0 and v = 1) are shown in Fig. 5c. Assuming a Maxwell-
Boltzmann distribution for the vibrational populations, a fit to the experimental signal gave
the internal temperature.

Our theoretical research also gave insight into charge exchange between Ca and Yb+

[14]. We first determined the previously unknown potential surfaces that dissociate to the
nearly-degenerate Ca+Yb+ and Ca++Yb limits as well as the transition dipole moment
between these potentials see Fig. 6. For these calculations we used a non-relativistic multi-
configurational second-order perturbation theory (CASPT2) implemented in the MOLCAS
software suite. This approach works exceptionally well for the structure of this molecule
where the potential surfaces dissociating to the Ca(3s2)+Yb+(6s) and Ca+(3s)+Yb(6s2)
limits are energetically close. The reference wave functions are obtained from a complete
active space self consistent field (CASSCF) calculation. The TZVP quality ANO-RCC basis
set of the valence space consists of the 9s 8p 4d 3f 2g orbitals for Ca and 6s 5p 3d 2f 1g orbitals
for Yb. The potential curves relevant to the experimental observation have solid lines and
are labeled X2Σ+ and A2Σ+ for the two ground states of the molecular ions spectroscopic
constants are presented in Figure 6.

We then developed quantum mechanical models for three charge-exchange channels: non-
radiative transfer, radiative transfer, and radiative association, and calculated the rate coef-
ficients for each. The two potentials of Fig. 6 are closest at 15 a.u. The interaction allows for
the non-radiative charge exchange, which we calculate using a coupled-channel (cc) method.
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FIG. 5: State-sensitive photodissociation of BaCl+. a) The X1Σ+ and A1Π potential curves as

functions of internuclear separation and an arrow indicating the photodissociation pathway. The v=

0 and v=1 vibrational states have different frequency responses to the laser. b) Permanent dipole

moment of the X1Σ+ state. c) Experimental and theoretical cross-section of the photodissociation

transition. The dash-dot line is a thermally averaged cross section at 300 K. Also shown are the

v=0 and v=1 contributions.

Since we have initially two particles colliding (Yb+ and Ca) they do not bind together.
Therefore we are looking at the non-radiative charge exchange transition (nRT) from a con-
tinuum state to a continuum state. In order to do the cc calculation we first diabatized the
potentials shown by the red dotted lines on the graph. That means that we create potentials
that cross at 15 a.u. The coupling between potential, we assume to be a Lorentzian in R
with the maximum value equal to half the splitting at R=15 a.u. The width of the coupling
matrix element (dashed line) is chosen such that if we diagonalize the 2x2 potential matrix
at each R it approximately reproduce the original potentials. To calculate the nRT rate we
include many partial waves for both continua. For example, the temperatures up to 1 K
require ∼ 100 partial waves in the calculation. Unthermalized sample has shape resonances
due to the many partial waves that contribute. However, once we thermalize the effect of
resonances is less visible. We also have preliminary results for the radiative rate coefficients
by spontaneous emission.

To explore a role of the excited states in the charge-exchange reaction we performed ex-
tensive calculation the electronic structure of the BaCa+ molecule,using a relativistic multi-
reference restricted active space configuration-interaction (RMR-RAS-CI) method [15]. Spin-
orbit effects are large in BaCa+ and a relativistic calculation is required. A nonorthogonal
basis set is constructed from numerical Dirac-Fock atomic orbitals as well as relativistic
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FIG. 6: Potential energy curves of the BaCl+ molecule as a function of the internuclear separation

R. Solid, labeled curves indicate the potentials that are involved in the photodissociation scheme.

Other 1Σ+ (1Π) potentials are shown by dashed (dash-dotted) lines. The vertical arrow indicates

the A1Π←X1Σ+ single-photon photodissociation transition.

Sturmian functions. A symmetric reexpansion of atomic orbitals from one atomic center
to another simplifies the calculation of many-center integrals. At large interatomic sepa-
rations the molecular wave function has a pure atomic form that appropriately describes
the molecular dissociation limit. The 1s22s22p6...4d10 closed shells of barium and 1s22s22p6

closed shells of calcium atom are included in the core. An R-dependent all-electron core
potential is calculated exactly and included in the Hamiltonian. The core-valence basis set
is constructed from Dirac-Fock core 5s and 5p orbitals for Ba and 3s and 3p orbitals for
Ca. Valence Dirac-Fock orbitals are 6s, 5d, and 6p for Ba and 4s, 3d, and 4p for Ca, while
Sturm virtual 7s, 7p, 6d, 8s 8p and 7d orbitals for Ba and 5s, 5p, 4d, 6s, 6p, and 5d orbitals
for Ca are also included. We have tentitatively indicated which potentials correspond to
entrance and exit channels in the reactions that occur in UCLA experiment [16]. Loss only
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FIG. 7: Potential energies of the Ω=1/2 excited states of the BaCa+ molecule as a function of

interatomic separation R. The zero of energy is at the ground-state dissociation limit. The entrance

channel (solid lines) and exit channels (dashed lines) potentials are shown over an energy range of

16 × 103 cm−1. The bottom panel shows higher detail for potentials above the Ca+(2S)+Ba(1D)

dissociation limit.

occurs to exit channels with an asymptotic energy that is lower than that of the entrance
channel. The main reason for calculating the Ω=1/2 potentials is that only they are seen
in the experiment. The lowest-excited Born-Oppenheimer potentials of Ω=1/2 symmetry
for this calculation are shown in Fig. 7. The curves are also assigned by their atomic dis-
sociation limit. The entrance channel potentials are shown by solid lines and exit channels
are plotted by dashed lines. In the energy range around 20× 103 cm−1 of the dissociations
energy the potential curves are closely spaced. It shows that there are strong interactions or
avoided crossings between neighboring excited potentials. Potentials that dissociate to an
energy larger than 27 × 103 cm−1 are not shown. Coupling between potentials are due to
radial non-adiabatic couplings. A coupled-channels calculation that includes these mixings
falls outside the scope of this study.

A. Reactive scattering and trapping of ultracold neutral molecules

Recent experiments with ultracold KRb molecules in their absolute ground state have
shown evidence for short-range chemical reactions [17]. In these experiments molecules were
allowed to collide with each other or with remaining cold atoms. At ultracold temperatures
these collisions are governed by quantum-mechanical threshold effects. Measurements of the
inelastic collision rate for KRb+K found a rate of 1.7(3) × 10−10 cm3/s, which is primarily
due to a reaction to K2+Rb.

This first experimental effort could only probe the total loss rates. Similarly, the first
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theoretical models [18, 19] based on “simple” quantum-defects ideas could only determine
the total loss rate. It would, however, be beneficial to obtain state-to-state reaction rates.
From the theory side this will require a multi-channel scattering calculation of the reaction
as well as a determination of the three-body potential surfaces.

We started our investigation of the KRb + K to K2+ Rb reaction by obtaining the
potential surfaces of this three-atomic system using the MOLCAS package. We obtained
the lowest two doublet K2Rb potentials and found, for example, that at the absolute lowest
energy Rb is separated by 8.24a0 and 10.4a0 from the two K atoms with an angle of 48.4o

between K-Rb-K. The dissociation energy of the lowest doublet potential is E/(hc) = 1915
cm−1 to K2+ Rb, while its atomization energy to three free atoms is 5740 cm−1. The two
doublet-spin potentials dissociate to the same atomization limit and, in addition, have a
conical intersection for the C2v symmetry, where the separation RRbK between Rb and each
of the K atoms is the same. Figure 8 shows this conical intersection for the potentials.

As a next step we incorporated the potentials into a multi-channel quantum-defect theory
for three-atomic systems (the statistical model) [20] to approximately solve the three-particle
Schrödinger equation. The model assumes the existence of a long-lived trimer resonance with
all three atoms close together, decaying incoherently into reagent and reactant products. In
our context, reagent and reactant products correspond to rovibrational levels of the KRb and
K2 dimer, respectively. The multi-channel aspect of the statistical theory indicates the exact
coupled-channels treatment of the couplings between the reagent (reactant) ro-vibrational
levels due to the presence of the third atom.

In addition, we studied the dynamic polarizability of the N = 0 and N = 1 rotational
levels of the v = 0 vibrational level of the ground X1Σ+ state of KRb [21]. The molecules
are placed in a 1063 nm optical dipole trap and exposed to an external magnetic field B
of 545.9 G. There is no static external electric field present. We extend the ideas of mix-
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ing of rotational levels due a static external electric field of Ref. [19] to include mixing
of rotational-hyperfine levels due to intrinsic nuclear electric-quadrupole interactions intro-
duced in Ref. [22]. The goal is to theoretically determine the polarizability of the selected
|N,mN ,mK,mRb〉 rotational-hyperfine levels and describe their dependence on the angle θ
between the direction of the magnetic field and the polarization of the optical trapping lasers.
Here N describes the rotational quantum number, mN , mK and mRb are projections of ~N
and the nuclear spin ~Ia of a = K and Rb onto the external magnetic-field axis, respectively.

First, we construct the full Hamiltonian for these rotational-hyperfine levels. It includes
the nuclear Zeeman interaction, −µaIz,aB for atom a = K or Rb, where the magnetic field
is along the z direction and µa is the nuclear magneton of atom a. It also includes the
nuclear quadrupole interaction, (eqQ)aC2(θφ) ·T2(Ia, Ia), with coupling constants (eqQ)a for
each atom a that couples its nuclear spin to rotational states. Here, Clm(θφ) is a spherical
harmonic and T2m(Ia, Ia) is a rank-2 tensor created from the spin Ia. Finally, we include a
polarizability interaction Hamiltonian, −(α‖O‖+α⊥O⊥)I, with strengths α‖ and α⊥, tensor
operators O‖ and O⊥ that depend on light polarization and rotational angular momentum
~N , and I is the laser intensity of the dipole trap.

This Hamiltonian couples (1+3)×9×4 = 144 channels |N,mN ,mK,mRb〉 and has four pa-
rameters: the quadrupole interaction constants for each of the two atoms and the “reduced”
polarizabilities α‖ and α⊥, which are the vibrationally-averaged v = 0 parallel and perpen-
dicular polarizabilities that include contributions from all excited 1Σ+ and 1Π potentials,
respectively. We find transition energies by diagonalizing the Hamiltonian and analyzing its
eigenfunctions to connect to the states that have been observed experimentally. Eigenstates
are identified by the channel state with the largest contribution. Typically this contribution
is more than 90% and we are justified in labeling eigenstates by one |N,mN ,mK,mRb〉.

The two quadrupole parameters were estimated in Ref. [22] based on measurements of
transition energies between sub-levels of the N = 0 and N = 1 states in the optical dipole
trap. Here we improve these constants using new measurements of the transition energies for
three hyperfine levels of the N = 1 rotational state removing the effects of the trapping psed
on these fits we can now predict polarizabilities of any state of the manifold as a function of
angle θ and intensity I of trapping laser field. The polarizability of eigenstate j with energy
Ej(I) is defined as the derivative αj = −dEj/dI, evaluated at laser intensity I. Figure 9
shows the polarizability as a function of θ based on the “exact” Hamiltonian for the four
states studied here and laser intensity I=2.35 kW/cm2. The agreement with experimental
observations, also shown, at the same laser intensity is satisfactory. The polarizability for
|1,−1,−4, 1/2〉 deviates noticeably for large angles, while that for |1, 0,−4, 1/2〉 does so for
small angles. The magic angle between the states |0, 0,−4, 1/2〉 and |1, 0,−4, 1/2〉 is located
at θ = 49 degrees deviating from the solution of 3 cos2 θ− 1 = 0 predicted in Ref. [19] in the
absence of the nuclear quadrupole interaction.

Figure 9 shows the polarizability, when the off-diagonal quadrupole coupling between
channels is omitted. This leads to 3× 3 Hamiltonian matrices, where |N = 1,mn = 0, 1,−1〉
channels with the same nuclear spin state are coupled by the polarizability Hamiltonian
operator. The difference with the exact results is small and indicates that the off-diagonal
quadrupole interaction do not lead to important corrections. However, it needs a further
investigation. The difference between “exact” and “finite difference” derivatives shows that
the effect of the light is non-perturbative for the laser intensities used in JILA experiment.
The laser induced energy shifts can be as large as those from the nuclear quadrupole inter-
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actions. Finally, Fig. 9 also shows the finite difference (Ej(I)−Ej(I = 0))/I corresponding
to the observable measured by parametric heating experiments [21].
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[5] A. de Paz, A. C. A. Sharma, E. Maréchal, J. H. Huckans, P. Pedri, L. Santos, O. Gorceix,

L. Vernac, and B. Laburthe-Tolra, Phys. Rev. Lett. 111, 185305 (2013).

0 15 30 45 60 75 90
4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

|1,1Ú

|0,0Ú

|1,-1Ú

 


/h

 (1
0-5

M
H

z/
(W

/c
m

2 ))

angle (degrees)

|1,0Ú

FIG. 9: Polarizability of four rotational-hyperfine states of the lowest vibrational level of the X1Σ+

potential of KRb as a function of angle θ between the polarization of the dipole-trap laser at

1063 nm and a bias magnetic field with strength B = 545.9 G. The four states are labeled by

rotational levels |N,mN 〉 = |0, 0〉 (black) , |1, 0〉 (blue), |1,−1〉 (green) and |1,+1〉 (red). We plot

the finite difference ∆/I. Error bars reflect our uncertainty in locating the center of the parametric

heating resonance. Open circles are a (direct) measurement of the polarizability from shifts in

the microwave transition frequency. Curves are theoretical simulations of these experiments. Full

curves correspond to the polarizability obtained from diagonalizing the exact Hamiltonian, dotted

curves are based on the finite element form of the energy derivative, and the dashed curves are the

polarizability obtained from an approximate 3 × 3 Hamiltonian. We only show the polarizability

of the eigenstate with the most |1, 0〉 character.

11



[6] M. Lu, S. H. Youn, and B. L. Lev, Phys. Rev. Lett. 104, 063001 (2009).

[7] A. Frisch, K. Aikawa, M. Mark, A. Rietzler, J. Schindler, E. Zupanic, R. Grimm, and F. Fer-

laino, Phys. Rev. A 85, 051401(R) (2012).

[8] S. Kotochigova and A. Petrov, Phys. Chem. Chem. Phys. 13, 19165 (2011).

[9] S. Kotochigova, Rep. Prog. Phys. 77, 093901 (2014).

[10] A. Petrov, E. Tiesinga, and S. Kotochigova, Phys. Rev. Lett. 109, 103002 (2012).

[11] A. Frisch, M. Mark, K. Aikawa, F. Ferlaino, J. L. Bohn, C. Makrides, A. Petrov, and S. Ko-

tochigova, Nature 507, 475 (2014).

[12] E. R. Hudson, Phys. Rev. A 79, 032716 (2009).

[13] W. G. Rellergert, S. T. Sullivan, S. J. Schowalter, S. Kotochigova, K. Chen, and E. R. Hudson,

Nature 495, 490 (2013).

[14] W. G. Rellergert, S. T. Sullivan, S. Kotochigova, A. Petrov, K. Chen, S. J. Schowalter, and

E. R. Hudson, Phys. Rev. Lett. 107, 243201 (2011).

[15] S. Kotochigova and E. Tiesinga, J. Chem. Phys. 123, 174304 (2005).

[16] S. T. Sullivan, W. G. Rellergert, S. Kotochigova, and E. R. Hudson, Phys. Rev. Lett. 109,

223002 (2012).

[17] S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quéméner, P. S.
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[22] S. Ospelkaus, K.-K. Ni, G. Quéméner, B. Neyenhuis, D. Wang, M. H. G. de Miranda, J. L.

Bohn, J. Ye, and D. S. Jin, Phys. Rev. Lett. 104, 030402 (2010).

12


	rpt_date: 27-10-2014
	rpt_type: Final report
	dates_cov: From 15 AUG 2011 to 14 NOV 2014
	title: Reactive Collisions and Interactions of Ultracold Dipolar Atoms
	ctr_no: 
	grant_no: FA9550-11-1-0243
	prog_elem: 
	proj_no: 
	task_no: 
	work_unit: 
	authors: Dr. Svetlana Kotochigova
	perf_org: Temple University, Physics Department1900 N. 13th Street, Philadelphia, PA 19122-6082
	perf_rptno: 
	spons_agcy: Dr. Tatjana CurcicProgram Officer, Atomic and Molecular PhysicsAir Force Office of Scientific Research/RTB875 North Randolph St.Arlington, VA 22203,        (703)696-6204                       tatjana.curcic.1@us.af.mil
	acronyms: 
	spons_rptno: 
	dist_stmt: There is no limitation on the distribution of this report. Distribution A
	supp_notes: 
	abstract: We explored Feshbach resonances in the collision between ultracold highly-magnetic dysprosium and erbium atoms. The resonance density is orders of magnitude larger than seen in any other previously studied atomic system. Moreover, we showed that these resonance can only exist because of the anisotropic nature of the atom-atom potentials. Analysis of nearest-neighbor spacings between Feshbach resonances shows a chaotic distribution that one would expect from random-matrix theory. We explained these statistics as originating from the large strength of the anisotropy. We demonstrated that the vibrational motion of BaCl+ molecules is quenched by collisions with ultracold calcium atoms at a rate comparable to the Langevin rate. This is over four orders of magnitude more efficient than traditional sympathetic cooling schemes. In addition, we calculated the electronic structure of BaCl+ and other molecular ions. Based on these results we found unusually-large rates for cold charge-transfer reactions between neutral and ionic atoms.We analyzed the dynamic polarizability at optical laser frequencies of polar KRb molecules in the ground and first rotationally excited states. The existence of a ``magic angle'' between an external magnetic or electric field and the laser polarization was predicted, where the coherence time between these rotational levels sharply increases. Moreover, we performed ab-initio calculations of the KRbK potential surfaces and  incorporated these potentials in a scattering code as well as an approximate quantum-defect model to gain insight into ultracold reactions.
	subj_terms: ultracold atoms and molecules, dynamic polarizability, Feshbach resonances, magnetic atoms, laser control of molecules
	rpt_class: U
	abstr_class: U
	page_class: U
	limit: 
	pages: 
	name_resp: 
	phone_resp: 
	Reset: 


